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The role of dormant B cells and cycles is analyzed in the context of a Lotka- 
Volterra network. It is shown that dormant B cells stabilize a cycle and that in 
this way both cooperate to preserve the internal image (memory} of an antigen. 
The network is embedded in a hierarchical scheme which allows adaptation, 
learning, and innovation by biased and random mutation. 
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1. I N T R O D U C T I O N  

The i m m u n e  system, as a resul t  of b io logica l  evolut ion,  protects  higher  
organisms  agains t  a mul t i tude  of poss ible  invaders.  To do  this, it develops  
r emarkab l e  abil i t ies 3 dur ing  the lifetime of an individual .  I t  can identify a 
wide range of  foreign materials .  The reac t ion  to them depends  on the 
ind iv idua l  h is tory  of the organism.  Each ind iv idua l  starts,  in a sense, from 
zero. Ear ly  impress ions  are especial ly deep and  lasting. The system is able 
to learn  and  to  memorize .  I t  recognizes even fuzzy st imuli  and  responds  in 
a way  a p p r o p r i a t e  to t h e ' c o n t e x t .  Thus,  the immune  system shares an 
as tonish ing  number  of p roper t ies  with the centra l  nervous  system, which is 
the subject  of intense s tudy (under  the heading  of neura l  networks) .  Both  
systems are buil t  f rom a mac roscop ic  number  of funct ional ly  connected  
const i tuents .  
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Apart from these striking similarities at the system level, there are 
important differences at the microscopic level. The cells of the immune 
system move more or less freely and have a finite lifetime. During the whole 
existence of the organism there is the production of new cells, and mutation 
and selection play an important role. In contrast to the central nervous 
system, it is easier to isolate parts of the immune system and to study their 
functioning separately. It is even possible to construct and exploit artificial 
subsystems (e.g., monoclonal antibodies). 

We now explain some major key terms and give a brief and simplified 
description of the constituents of the immune system and how they interact. 

Antibodies are Y-shaped macromolecules which identify foreign 
material (antigens) and tag them for further treatment. A total of 10 5 iden- 
tical antibodies are attached on the surface of one B lymphocyte. Typically 
there exist 10 8 different types of antibodies in the organism. They are dis- 
tinguished by three-dimensional structures, paratopes and epitopes, whose 
function can be visualized as keys and locks. The paratopes fit as keys on 
locks provided by an antigen or the epitopes of other antibodies (see 
below). The set of all epitopes characterizing an antibody of a given type 
is called the idiotope. 

A B lymphocyte is stimulated to proliferate (cloning) and to secrete 
free antibodies if paratopes of its surface antibodies recognize a com- 
plementary structure. Capable of serving as such is the epitope (or even the 
paratope) of a different antibody or a corresponding three-dimensional 
structure on the surface of an antigen, also called an epitope. The strength 
of the reaction increases with the matching between the complementary 
structures. The paratopes of free antibodies dock at the corresponding 
epitopes of the antigens and thus mark them, e.g., for eating by macro- 
phages. On the other hand, a B lymphocyte is inhibited if its epitopes are 
recognized by a complementary structure. The amplifying of the produc- 
tion of useful antibodies is called clonal selection. (8) 

Since the paratope of a given antibody reacts not only with the 
epitopes o f  foreign material (antigens), but also with the epitopes of 
antibodies of a different type, there exists a complicated network of interac- 
tions between the antibodies in one organism, the idiotopic network. ~3) 
Typical patterns in this network are (Fig. 1): 

(i) Idiotopic cascades. An antigen with epitope eo stimulates the 
production of antibodies with complementary paratope Pl. Their idiotope 
il eventually stimulates the production of antibodies with complementary 
(anti-idiotopic) paratope P2 and so on. This dynamical pattern is driven by 
the presence of the antigen. 

(ii) Cycles. If in the above-described wave an idiotope in is by chance 
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Fig. 1. Typical patterns of the idiotopic network: idiotopic cascade and cycle. An antibody 
of type k is represented by its paratope and idiotope (Pk, ik). The arrows indicate a nonzero 
matching between paratope Pk and idiotope ik-l. In the cycle, the paratope Pl recognizes 
both the antigen e o and the idiotope in, the internal image (memory) of e0. 

complementary to the paratope Pl,  the chain is closed to form a cycle and 
the production of antibodies of type 1 is triggered even in the absence of 
the antigen. The idiotope in acts within this stationary pattern as an 
internal image of eo (memory). 

It should be mentioned that there is a second mechanism for memory: 
If a B lymphocyte is stimulated to proliferate, a few cells of the next genera- 
tion go into a dormant state. The lifetime of these dormant B cells is several 
orders of magnitude larger than usual. 

There are two ways to introduce new types of antibodies. About 5 % 
of the B lymphocytes are replaced per day by new ones generated in the 
bone marrow. The new antibodies are built through a process of combining 
genes from a relatively small library of V, D, J, and C genes. (9) Further- 
more, stimulated B lymphocytes reproduce themselves with a mutation rate 
which is five orders of magnitude larger than usual. (m) It has been argued 
that higher-order control mechanisms exist which cause some nonrandom- 
ness in the mutation. 

This picture is of course a crude simplification of reality. For  instance, 
a whole class of cells, the T lymphocytes, which are known to play an 
important role in the distinction between self and non-self, is neglected as 
well as many other details. 

The paper is organized as follows. In the next section we introduce a 
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system of Lotka-Volterra equations which describe a given set of con- 
stituents of the idiotopic network including dormant B cells. In Section 3 it 
is shown, for a representative class of examples, that the two mechanisms 
for memory, dormant B cells and cycles, cooperate in the sense that the 
former stabilize the latter. In the absence of dormant B cells, cycles are 
unstable. If a formation of stable cycles is possible, inhibition dominates 
stimulation, and as a consequence the system cannot explode. In Section 4 
the Lotka-Volterra network is embedded in a hierarchical scheme which 
governs the generation of new types of antibodies (innovation), the 
dynamics of the parameters (adaptation), as well as the appearance of 
dormant B cells. 

2. L O T K A - V O L T E R R A  E Q U A T I O N S  FOR T H E  I D I O T O P I C  
N E T W O R K  

In this section we derive equations of motion which describe the inter- 
actions between a given set of constituents of the idiotopic network. 4 
Naturally, this leads to equations which are familiar from a different con- 
text, e.g., from the kinetics of autocatalytic reactions, the so-called Lotka-  
Volterra equations. ~11'12) 

For simplicity we do not distinguish between free and surface 
antibodies and denote their number by xi, where i = 1 ..... N labels the type, 
characterized by only a single epitope ei and paratope P r  (The B 

lymphocy tes  are thus only implicitly dealt with.) The number of antigens 
characterized by the epitope e j, where j = N + 1 ..... N + R, is denoted by yj. 

In a simple mean-field approach the probability of a collision between 
two of them is proportional to the respective products xixj and x~yj. The 
strength of the reaction is proportional to the matching m o. between the 
paratope Pi and the epitope ej. Then the stimulation of an antibody x~ is 
proportional to mo.x~'x i and mo.xiy j. The inhibition is proportional to 
-xmj~x~xj, where ~: allows for an asymmetry between stimulation and 
inhibition. A further important parameter is 7, the inverse lifetime of the 
antibodies in the absence of stimuli. 

The effect of dormant B cells is to ensure the production of antibodies 
of type i if there is a nonzero matching rn~i with the epitopes of the stimuli 
x i, respectively yj, even in the absence of x r  This is included by adding a 
term mud~xj, respectively m~diyj, where d~ is a source strength mimicking 
the presence of dormant B cells of type i. 

4 Several models of mathematical immunology are reviewed in ref. 13; see also refs. 5-7 and 
14-21. 
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In this way, introducing the shorthand Mij = m o -~cmje, we arrive at 

xi=xi Mgjxj-7 +d~ ~ muxj+(de+x~) ~ mo-y j, i=l,...,N 
j 1 j = l  j = N + I  

(1) 

Here 2 denotes a differentiation with respect to time. A similar set of 
equations holds for the antigens, 

, i=ye(~-  ~ mjex;), i=N+I,...,N+R (2) 
j = l  

where ~ is the difference between a proliferation rate and an inverse 
lifetime. For relevant antigens, ~ is positive. Equations (1) and (2) are of 
a generalized Lotka Volterra type. Setting de = 0  in (1), we recover the 
model proposed by Farmer et aL (16) 

The matching m~ measures how well the complementary structures of 
paratope p~ and epitope ej (key and lock) fit together. The mo. enter the 
Lotka-Volterra equations as parameters which could be obtained, for 
example, in the following way. The underlying three-dimensional structures 
can, as any information, be encoded by binary strings, i.e., sequences of 0 
and 1. Then, similar to the calculation of the Hamming distance (cf., e.g., 
ref. I1), the number of complementary bits v is counted. If v is below a 
certain threshold vth, the matching is zero (no reaction). Above the 
threshold the matching linearly increases with v -v th .  This is the simplest 
version. The procedure can be refined allowing different lengths of the 
binary strings and all possible alignments. 

3. M E M O R Y  AS CYCLES IN A L O T K A - V O L T E R R A  N E T W O R K  

We now investigate the existence and the stability of simple stationary 
solutions (fixed points) of the above Lotka-Volterra equations in the 
absence of antigens ( Y i - 0 )  to check the possibility of a memory provided 
by cycles (3) in the idiotopic network. 

We first consider (1) without taking into account the effects of 
dormant B cells (de-  0), as originally proposed in ref. 16. From 

N 

f C i = X i  2 ( M ~ x j - 7 )  ( 3 )  
j i 

s N we obtain the equation of motion for = Zk= ~ xk, 

N N 

A+Ts = ~ xjMjkXk=(1--~C) ~ xjmjkxk (4) 
j , k  = 1 j , k  = I 
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It shows (the xi and mij are positive) that  for x/> 1 the zero fixed point  
s = 0, i.e., x s =  0, is globally stable. A nonzero  fixed point  x s =  a, which is 
determined by M a  = 71, can exist only for ~c < 1. Here 1 is the vector 
consisting of ones only. 

The local stability of  a fixed point  x s of a system of differential 
equat ions i = F ( x )  is determined by considering the dynamics of  a small 
deviation e = x -  x ~, which is governed by 

/; = ~ = F'(x~)e (5) 
x=xS 

x ~ is locally stable if e dies out, i.e., if the matrix F ' ( x  s) has only eigenvalues 
with negative real part. 

Fo r  the system (3) we find 

F , ( x ~ ) u = f u  Mikx~_ 7 +x~Mu= -73~j if x S = 0  (6) 
_1 (a iM ~ if x ~ = a 

which shows that  xS=  0 is locally stable for all x. 
As an example for a nontrivial  fixed point  we consider the simplest 

possible cycle of two antibodies xl  and x 2 characterized by the mutual  
matching m~2 and m2~ as shown in Fig. 2. All the other xi and m~j, 
including m ~  and m22 in (3), are put to zero. Then the nonzero  fixed point, 

a : 7{ 1/M21, 1/M,~} (7) 

is in the positive cone if ~ < ~c~ min{m12/m21 , m2~/mx:} <<, 1. 
However ,  since the matrix 

F ' ( a )  = 7 (M21/0M12 M~2/oM2~ ) (8) 

\ / 
Fig. 2. Simplest possible cycle, consisting of two antibodies x 1 and x2. The production of xl 
is stimulated since its paratope recognizes the epitope of x2 and is at the same time inhibited 
since its epitope is recognized by the paratope of x 2, This competition allows a stationary 
state, i.e., a cycle. 
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has the eigenvalues -+7, the 2-cycle corresponds to a saddle point  and is 
locally unstable (Fig. 3). 

We now turn to the higher-dimensional case. We first treat the n-cycle 
characterized by mi, i+l=m with mn,n+l=mn,1 and the other matrix 
elements vanishing, and show that  it is unstable. The components  of the 
corresponding fixed point  a are 7 / [ ( 1 - x ) m ]  and they are positive 
provided K < 1. Due  to (6), we need only investigate the spectrum of the 
matrix M so as to determine the stability of a. The eigenvalue equat ion 
M z  = Az  gives 

Z~+I=2Zk+~CZk_~, k = l  ..... n (9) 

with 2 = Aim and boundary  condit ions z0 = zn and Zl = Zn+l. The general 
solution of (9) is (22) 

z~=X?+ + rz t  (lO) 

where z_+ are the roots  of  the equat ion z 2 =  2z + ~. The boundary  condi- 
tions lead to 

z+(z+-l) z (z ~ - 1 )  

which allows a nontrivial  solution only if z+ = 1 or z ~_ = 1. This determines 
2 .  Writ ing z+ =exp(i~b), we obtain 

2 : (1 - to) cos ~b + i(1 + K) sin ~b, q}=2zcl/n, /=0, . . . ,  n -  1 (12) 

Whatever  ~c, the spectrum contains eigenvalues with positive real part. This 
proves the assertion that  the cycle is unstable. [ In  fact, this also follows 

X 2 

~< o ~< 1 

~ > 1  x 2 

X I 0 a I X I 

Fig. 3. Schematic flow diagrams for the case of two antibodies in the model (3), without 
dormant B cells. For K > 1, zero is the only (globally stable) fixed point. A nonzero fixed point 
exists for • < 1 and lies in the positive cone for x < K ~ It is unstable, however. 
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from T r F ' ( a ) = 0 . ]  Since the eigenvalues depend continuously on the 
matrix elements, there is an open neighborhood of matrices whose cycles 
are unstable as well. 

As a further example, complementary to the previous one, we consider 
the case where the matrix m is symmetric and assume that it allows a fixed 
point of Eq. (3) with positive components. Let us denote by A the diagonal 
matrix with elements ai. The spectrum of AM, which occurs in (6), equals 
that of A 1/2MA 1/2 and by the law of inertia (23) the number of positive eigen- 
values of the latter agrees with that of M = (! - x)m. The fixed point has 
a chance of being stable only if x < 1. (Otherwise zero is globally stable.) 
It then suffices to study m, which has nonnegative matrix elements only. By 
the theorem of Perron and Frobenius, (23) an indecomposable matrix with 
nonnegative elements has a strictly positive (maximal) eigenvalue. Since a 
general symmetric matrix can be written as a direct sum of indecomposable 
blocks, (23) we have shown that also in the symmetric case a fixed point is 
unstable. 

In view of the above case studies and the fact that Tr F ' ( a ) =  0, we 
conjecture that no memory due to stable fixed points exists in the dynamics 
associated with (3). 

The stability of zero and the instability of cycles make the results of a 
numerical simulation qualitatively reported in refs. 15 and 16 plausible. 
There, the Lo tk~Vol te r ra  equations without dormant cells were integrated 
numerically. After a characteristic time, the system was examined and all 
constituents below a minimal concentration were removed by hand. The 
removed antibodies were replaced by ones which were generated from the 
old ones by applying genetic operators or using a random sequence 
generator. Even in the absence of antigens no steady state of the network 
was observed, but only a dynamic behavior: "something like a weather 
pattern." 

We now turn to our model, which takes into account dormant B cells. 
In the absence of antigens, (1) reads 

N N 

2i=xi ~ (M~xj-~)+d~ ~ rno.x j (13) 
j = i  j = l  

It is intuitively clear--and will be confirmed short ly-- that  the presence of 
the source term in the right-hand side of (13) destabilizes the zero fixed 
point and favors the formation of stable cycles. The stability matrix F '(x s) 
for this model differs from (6) by an additional term d~rngj on the right- 
hand side, 

F'(XS)o=3iJ(~=l Mikx~--7)+x~Mij+dimij (14) 
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We first invest igate  the 2-cycle shown in Fig. 2. Besides x s = 0, we find the 
nonzero  fixed po in t  

a = (7 2 - dld2m12mal){(ym21 + d2m21M12) -1, (yml2 -+- d l m l z m 2 t )  -1 } 

and  the co r r e spond ing  s tabi l i ty  matr ices  
(15) 

F , ( 0 ) = ( d 2 2 7 2 ,  d,;12),_ F,(a)=(-dtrn12q,,, Yq -d2m2,/q]7/q ~ (16) 

where q =  a2/al. The analysis  of  the (a lways real)  e igenvalues yields that  
for 7 < 7 0 =  (dld2m12m21)l/2 the 2-cycle is local ly s table  and the zero fixed 
po in t  is unstable,  F o r  7 > 7 o the oppos i te  is t rue (Fig. 4). The condi t ions  
tha t  a lies in the posi t ive cone are ~c> ~c ~ =max{~c~2, K2~} and  ~c< ~c~ 
min{~c,2, ~c21} for the s table and  the uns table  cycle, respectively.  Here  ~co= 

0 0 1. (7mi j q_ dimijmji)(ymj i q_ dim2)-1. F o r  m12 -- m21 , we have tc s = ~:,, = 

y >yO 

0 
X 2 ,,4. < x  u ~<1 

a 2 

X 2 

a 2 

0 a 1 X t 0 

y < y O  

0 

a 1 X 1 

Fig. 4. Schematic flow diagrams for the case of two antibodies in the model (13), which 
includes dormant B cells. There exists a nonzero fixed point which changes its stability at 

0 the fixed point is not in the positive cone. A stable cycle (right picture) 7=7 ~ For ~c~ < ~ < ~c., 
can serve as a memory. 

The second case we s tudy  is the n-cycle in the presence of d o r m a n t  
cells. We  now assume mi, i+ l  = m and  di = d. The componen t s  of  the fixed 
po in t  a all equal  ( ? - m d ) / [ ( 1 - ~ c ) m ]  = a .  The  co r r e spond ing  s tabi l i ty  
mat r ix  is 

-~ca  .. 0 

F ' ( a )  = m  ".. .  " (17) 

0 . . .  d 

d + a  - K a  - 
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and by a similar analysis to the one used previously we find that the eigen- 
values A are 

A=Tcos (~ -dm+im[d+( l+ tc )a ] s in fb ,  qt=2rcl/n, 1= 0,..., n -  1 

(18) 

The real part of A is always negative if 7 -  dm < 0. The fixed point a then 
has positive components if x > 1, i.e., inhibition dominates. This condition 
has the additional advantage of inhibiting the system's escape to 
infinity--as is most easily seen by generalizing (4) to the case of 
nonzero d. 

We now present an intuitive argument which extends the previous one 
and supports the idea that the presence of dormant cells stabililzes nonzero 
fixed points and destabilizes zero. Combining (13) and (14), one easily 
finds that the stability matrix at a nonzero fixed point a may be written 

( a:) F ' (a )u=  d ~ m ~ - ~ j  mik +aiMij (19) 
k = l  

If ak/ai ~ 1, as in the previous case, the first matrix on the right-hand side 
has eigenvalues with negative real parts, by Gershgorin's theorem. (23) 
Hence we might expect that the spectrum of the whole expression is shifted 
to the left. 

Whatever the matching matrix m, zero is always destabilized for large 
enough d~. To see this, we note that the stability matrix for the zero fixed 
point is 

F'(0),j = -76 o. + dim o (20) 

By the Perron-Frobenius theorem and its extensions, (23) the maximal 
(positive) eigenvalue Area x of the matrix dim o. is a strictly increasing func- 
tion of its elements. Hence, the maximal eigenvalue Amax-7 of (20) 
becomes positive for d i large enough. 

In summary, we have seen that only in the presence of dormant B cells 
does a parameter region exist in which the simple fixed points are stable. 
Stable fixed points provide a reservoir of antibodies which do not die out: 
They are memorized. Antigens with an epitope similar to the epitopes of 
the involved antibodies are immediately attacked. The matching need not 
be perfect and, as we will see in the next section, the memory is associative. 

We would like to add a final remark on the destabilization of the zero 
fixed point. We have just studied the role of dormant B cells. However, 
zero also loses its stability by the mere presence of antigens. For  example, 
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suppose a fixed dose Y3 of an antigen matching a single antibody of type 1 
is injected. Then, as follows from (1), the stability matrix of zero is 

F ' ( 0 ) t l  = - y  + m~3 y3 and F'(0)~j = - y 6  o for i r  (21) 

so that zero is destabilized if the matching or the concentration is 
large enough. In a similar vein one can show that a stable cycle 
a = ( a l ,  a2,..., aN), with an antigen matching x l ,  loses its stability if 
~ - - m l , N + l a t / > 0 ;  cf. Eq. (2). That is, if the antigen is too virulent, the 
matching is too small, or simply not enough at is available. The new cycle 
is also stable, but the organism exhibits a "chronic" disease. 

4. I N N O V A T I O N ,  A D A P T I V E  LEARNING,  A N D  M E M O R Y  IN A 
H I E R A R C H I C A L  S C H E M E  

In the previous sections we have analyzed the Lotka-Volterra equa- 
tions describing a given set of constituents of the idiotopic network. We 
know, however, as briefly described in Section 1, that the list of variables 
and parameters of these equations is dynamic. Therefore, the Lotka-  
Volterra equations have to be embedded into a hierarchical scheme which 
governs the generation of new variables and the dynamics of the 
parameters. This scheme consists essentially of the following. 

(i) To describe the renewal of B lymphocytes from the bone marrow, 
we inject at randomly chosen instants new antibodies whose paratopes and 
epitopes are generated at random or through genetic operators which 
describe typical mechanisms of mutation, e.g., inversion, point mutation, 
and crossover. These new antibodies replace those antibodies which are not 
stimulated (innovation) and die out after a characteristic lifetime 7 - t  

The proliferation of B lymphocytes of type i is stimulated if its 
paratopes Pi recognize with nonzero matching mo a complementary 
epimpe ej (cloning). The cells of the new generations may differentiate 
into those which release free antibodies and into dormant cells with a 
considerably longer lifetime. 

(ii) To describe the enhanced mutation during the cloning of 
stimulated B cells of sort i, we inject new antibodies whose paratopes are 
mutations of Pi, at a rate which increases with the respective magnitudes 
of muxix ~ and mijxiyj. Thus, we generate new antibodies centered about 
the stimulated type. It is likely that the matching with the stimulating 
epitope could be improved in this way. However, this mechanism is 
equivalent to a random walk on the corners of a high-dimensional hyper- 
cube. The time which the system needs to attain a specific point increases 
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exponentially with the dimension. It therefore seems desirable to look for 
a faster alternative. 

A possible, higher-order, control mechanism can be simulated through 
a Monte Carlo dynamics of the paratopes: A mutation Pi ~ Pk is accepted 
only if the matching with the stimulating epitope ej increases. Thus, the 
rule 

N 

H(ej) = - ~ m~j = minimal (22) 
k - - 1  

acts as a "teleological principle" which ensures an adaptation of the 
paratopes to the stimulating epitope and implies adaptive learning. 
Whatever the prescription to calculate the matching between epitope and 
paratope, the notation m~= (piles) elucidates the similarity with the 
description of neural networks. Here, however, we deal with a dynamics of 
the patterns. More details will be published elsewhere. 

(iii) To describe the appearance of dormant cells of the stimulated 
type i, we insert a nonzero di into the Lotka-Volterra equations if mo.xix j 
or mux iyj exceeds some threshold. Above the threshold, the formation of 
stable cycles is allowed. Below the threshold, the corresponding species 
may die out (we only mention that this effect could also be achieved by 
introducing higher-order nonlinearities). Starting from the virgin state 
(where all di vanish), the organism acquires in the course of its life a set of 
nonzero {d~} which reflects the individual history (memory). In other 
words: Due to the nonzero {d~}, there is some symmetry breaking of the 
virgin state. 

Taking into account that also the dormant cells have a longer but 
finite lifetime, we conclude that only the formation of cycles (which needs 
some fortune) makes the information unforgettable. For instance, to ensure 
the formation of a stable cycle, one repeats a vaccination. We therefore 
think that the two memory mechanisms, dormant B cells and stable cycles, 
do not act independently, but rather cooperatively. 

In this paper, we have concentrated on "small" subsystems. A full, 
preferentially analytic, understanding of this type of system seems to be 
indispensable for extending both theory and simulation to large-scale 
networks. In future work we will analyze the reaction of the virgin state to 
the exposure of an antigen, the stimulation of complementary antibodies, 
the appearance of dormant cells, and the formation of specific cycles. 
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